منابع مشابه
Hardy and Rellich Inequalities with Remainders
In this paper our primary concern is with the establishment of weighted Hardy inequalities in L(Ω) and Rellich inequalities in L(Ω) depending upon the distance to the boundary of domains Ω ⊂ R with a finite diameter D(Ω). Improved constants are presented in most cases.
متن کاملBessel potentials and optimal Hardy and Hardy-Rellich inequalities
We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in R, n ≥ 1, so that the following inequalities hold for all u ∈ C 0 (B):
متن کاملSobolev and Isoperimetric Inequalities with Monomial Weights
We consider the monomial weight |x1|1 · · · |xn|n in R, where Ai ≥ 0 is a real number for each i = 1, ..., n, and establish Sobolev, isoperimetric, Morrey, and Trudinger inequalities involving this weight. They are the analogue of the classical ones with the Lebesgue measure dx replaced by |x1|1 · · · |xn|ndx, and they contain the best or critical exponent (which depends on A1, ..., An). More i...
متن کاملNotes on Inequalities with Doubling Weights
Various important weighted polynomial inequalities, such as Bernstein, Marcinkiewicz, Nikolskii, Schur, Remez, etc. inequalities, have been proved recently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions on the weights. In most of the cases this minimal assumption is the doubling condition. Sometimes however, like in the weighted Nikolskii inequality, the slightly stronger A∞...
متن کاملMultidimensional Integral Inequalities with Homogeneous Weights
We give upper and lower bounds estimates for the best constant which appears in a multidimensional integral inequality, in the particular case of homogeneous weights. 2000 Mathematics Subject Classification: 26D15, 26B99
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2011
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-011-0454-3